JMO Geometry Questions

Level: Junior Ref No: J03
Puzz Points: 12
[JMO 2002 B3] In the diagram, O is the centre of the circle. The lengths of $A B$ and $B C$ are both 10 cm . The area of quadrilateral $O A B C$ is $120 \mathrm{~cm}^{2}$. Calculate the radius of the circle.

Level: Junior Ref No: J05
Puzz Points: 13
[JMO 2002 B5] ABCDE is a pentagon in which triangles $A B C, A E D$ and $C A D$ are all isosceles, $A C=A D$, $\angle C A D$ is acute. Interior angles $A B C$ and $A E D$ are both right angles.

Draw a sketch of pentagon $A B C D E$, marking all the equal sides and equal angles. Show how to fit four such identical pentagons together to form a hexagon. Explain how you know the pentagons will fit exactly.

Level: Junior Ref No: J09
Puzz Points: 12
[JMO 2000 B3] The diagram shows an equilateral triangle inside a rhombus. The sides of the rhombus are equal in length to the sides of the triangle. What is the value of x ?

[JMO 2007 B2] The diagram shows a quadrilateral $A B C D$ in which $A B, B C$ and $A D$ are all of length 1 unit, $\angle B A D$ is a right angle and $\angle A B C$ is 60°. Prove that $\angle B D C=2 \times \angle D B C$.

Level: Junior Ref No: J17
Puzz Points: 14
[JMO 2007 B5] A window is constructed of six identical panes of glass. Each pane is a pentagon with two adjacent sides of length two units. The other three sides of each pentagon, which are on the perimeter of the window, form half of the boundary of a regular hexagon. Calculate the exact area of the glass in the window.

Level: Junior Ref No: J21
Puzz Points: 12
[JMO 2006 B3] In this diagram, Y lies on the line $A C$, triangles $A B C$ and $A X Y$ are right angled and in triangle $A B X, A X=B X$. The line segment $A X$ bisects angle $B A C$ and angle $A X Y$ is seven times the size of angle $X B C$. What is the size of angle $A B C$?

[JMO 2006 B4] Start with an equilateral triangle angle of side 2 units, and construct three outwardpointing squares $A B P Q, B C T U, C A R S$ and the three sides $A B, B C, C A$. What is the area of the hexagon PQRSTU?

Level: Junior Ref No: J27
Puzz Points: 12
[JMO 2001 B3] In the diagram, B is the midpoint of $A C$ and the lines $A P, B Q$ and $C R$ are parallel. The bisector of $\angle P A B$ meets BQ at Z .

Draw a diagram to show this, and join Z to C .
(i) Given that $\angle P A Z=x^{\circ}$, find $\angle Z B C$ in terms of x.
(ii) Show that CZ bisects $\angle B C R$.
(You must give full reasons to justify your answer)

Level: Junior Ref No: J28
Puzz Points: 13
[JMO 2001 B4] The diagram shows a large rectangle whose perimeter is 300 cm . It is divided up as shown into a number of identical rectangles, each of perimeter 58 cm . Each side of these rectangles is a whole number of centimetres. Show that are exactly two possibilities for the number of smaller rectangles and find the size of the large rectangle in each case.

[JMO 2011 B 4] In a triangle ABC, M lies on AC and N lies on AB so that $\angle B N C=4 x^{\circ}, \angle B C N=6 x^{\circ}$ and $\angle B M C=\angle C B M=5 x^{\circ}$. Prove that triangle $A B C$ is isosceles.

Level: Junior Ref No: J39
Puzz Points: 12
[JMO 2008 B 3] In the diagram ABC and APQR are congruent triangles. The side PQ passes through the point D and $\angle P D A=x^{\circ}$. Find an expression for $\angle D R Q$ in terms of x .

Level: Junior Ref No: J41
Puzz Points: 14
[JMO 2008 B5] In the diagram, the rectangle ABCD is divided into three congruent rectangles. The line segment JK divides CDFG into two parts of equal area. What is the area of triangle AEI as a fraction of the area of $A B C D$?

[JMO 2004 B 1] In the rectangle $A B C D, M$ and N are the midpoints of $A B$ and $C D$ respectively; $A B$ has length 2 and AD has length 1.

Given that $\angle A B D=x^{\circ}$, calculate $\angle D Z N$ in terms of x .

Level: Junior Ref No: J44
Puzz Points: 11
[JMO 2004 B2] Three identical rectangular cards can be placed end to end (with their short sides touching) to make rectangle A, and can be placed side by side (with their long sides touching) to make rectangle B. The perimeter of rectangle A is twice the perimeter of rectangle B.

Find the ratio of the length of a short side to the length of a long side of each card.
[JMO $2004 B 4$] In the square $A B C D, S$ is the point one quarter of the way from A to B and T is the point one quarter of the way from B to A. The points U, V, W, X, Y and Z are defined similarly. The eight points S, T, U, V, W, X, Y, Z lie on a circle, whose centre is at the centre of the square.

Determine which has the larger area: the square $A B C D$, or the circle.

[JMO 2010 B5] The diagram, shows part of a regular 20-sided polygon (an icosagon) ABCDEF..., a square $B C Y Z$ and a regular pentagon DEVWX.

Show that the vertex X lies on the line DY.

Level: Junior Ref No: J56
Puzz Points: 11
[JMO 2009 B 2] $A B C D$ is a square. The point E is outside the square so that $C D E$ is an equilateral triangle.

Find angle $B E D$.
[JMO 2009 B 4] The diagram shows a polygon $A B C D E F G$, in which $F G=6$ and $G A=A B=B C=$ $C D=D E=E F$. Also $B D F G$ is a square. The area of the whole polygon is exactly twice the area of $B D F G$.

Find the length of the perimeter of the polygon.

[JMO 2005 B2] The diagram shows a square which has been divided into five congruent rectangles. The perimeter of each rectangle is 51 cm . What is the perimeter of the square?

Level: Junior Ref No: J64
Puzz Points: 13
[JMO 2005 B 4$]$ In this figure $A D C$ is a straight line and $A B=B C=C D$. Also, $D A=D B$.
Find the size of $\angle B A C$.

Level: Junior Ref No: J66
Puzz Points: 15

[JMO 2005 B6] Points A, B, C, D, E and F are equally spaced around a circle of radius 1 . The circle is divided into six sectors as shown on the left.

The six sectors are then rearranged so that A, B, C, D, E and F lie on a new circle, also of radius 1 , as shown on the right with the sectors pointing outwards.

Find the area of the curvy unshaded region.

Solutions

These are numerical solutions only where applicable. For full solutions, please buy past papers from http://shop.ukmt.org.uk/downloads

J03. 13
J05.
J09. $x=80$
J14. -
J17. $\frac{21 \sqrt{3}}{2}$
J21. 36°
J22. $12+4 \sqrt{3}$
J27.
J28. 28 cm by 122 cm and 18 cm by 132 cm
J34. -
J39. $\frac{1}{2} x$
J41. $\frac{1}{30}$
J43. $135-x$
J44. $1: 5$
J46. $16: 5 \pi$. Square has larger area.
J53. -
J56. 45°
J58. 36
J62. 85 cm
J64. 36°
J66. $3 \sqrt{3}-\pi$

